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ABSTRACT

Nowadays, neural vocoders are preferred for their ability to syn-
thesize high-fidelity audio. However, training a neural vocoder re-
quires a massive corpus of high-quality real audio, and the audio
recording process is often labor-intensive. In this work, we propose
a synthetic corpus generation method for neural vocoder training,
which can easily generate synthetic audio with an unlimited number
at nearly no cost. We explicitly model the prior characteristics of
audio from multiple target domains simultaneously (e.g., speeches,
singing voices, and instrumental pieces) to equip the generated audio
data with these characteristics. And we show that our synthetic cor-
pus allows the neural vocoder to achieve competitive results without
any real audio in the training process. To validate the effectiveness
of our proposed method, we performed empirical experiments on
both speech and music utterances in subjective and objective met-
rics. The experimental results show that the neural vocoder trained
with the synthetic corpus produced by our method can generalize
to multiple target scenarios and has excellent singing voice (MOS:
4.20) and instrumental piece (MOS: 4.00) synthesis results.

Index Terms— neural vocoder, synthetic corpus, speech syn-
thesis

1. INTRODUCTION
Vocoder has drawn much attention as it synthesizes the final wave-
form from acoustic information in many applications like text-to-
speech [1], singing voice synthesis [2], voice conversion [3] and
speech-to-speech translation [4], etc. The mainstream vocoders can
be broadly divided into traditional vocoders [5–7] and deep learning
based vocoders, i.e., neural vocoders [8–11]. The latter often require
large amounts of data for training. With the recent explosion of deep
neural networks, neural vocoders, which can offer state-of-the-art
speech synthesis quality, have gradually become the go-to choice.

As well as many other deep learning-based applications, one
bottleneck to optimizing the neural vocoder systems stems from the
acquisition of the training dataset, i.e., high-quality and noise-free
audio. Nevertheless, the collection of usable audio data is not easy,
whose process usually requires the speakers to vocalize for a long
time in a professional recording environment. In addition, data-
driven approaches often suffer from overfitting, i.e., neural vocoder
tends to have good performance only within the domain of train-
ing data, whereas synthesis quality degrades dramatically for out-of-
domain audio from unseen speakers, genders, languages, and styles
[12, 13]. This issue calls for adding more audio data with more di-
versified forms to the training dataset, which has further pushed up
the demand for high-quality corpus. Consequently, how to obtain a
vocoder that can generalize to more scenarios while using less, even
in the absence of training corpus, gradually becomes one of the fo-
cuses of the vocoder community.

∗ Corresponding author.

To address this problem, some previous works [12–14] try to
enhance the universality and generalization of the vocoder to avoid
data consumption in fine-tuning when encountering out-of-domain
inference data. However, these methods do not solve the funda-
mental problem of lack of training data, as these universal vocoders
tend to consume more high-quality real data during their training
process. A common approach to address data sparsity is data aug-
mentation [15–17]. Nevertheless, data augmentation relies heavily
on the original data and is less effective in generalizing to scenarios
with significant variations. Noteworthy, in [18], authors proposed
a flow-based vocoder SiD-WaveFlow for low-resource speech syn-
thesis, which can be established with only 5 minutes speeches. Al-
though its generalization performance is unproven, we believe low
resource waveform synthesis is one of the effective solutions to mit-
igate the data scarcity problem indeed.

Unlike other methods, we take the perspective of a complete
alternative to real data and seek to answer the question: Is it possi-
ble to use synthetic data instead of real data for neural vocoder
training?

Why do we consider synthetic data? Compared with real data,
synthetic data has at least the following advantages: It can be gen-
erated online and is easy to acquire; It is copyright-free and can be
widely used in both industry and academia; It saves massive mate-
rial and resource costs during real human voice recording; Its content
can be freely adjusted according to our wishes without constraining
from recording conditions. Actually, synthetic data has long been
used with good results in many areas like computer vision [19], au-
tomatic driving [20] and speech processing [21–23] etc. Nonethe-
less, the feasibility of training a vocoder with synthetic data solely
has yet to be proven.

Why is synthetic data feasible for vocoder? During the process
of restoring waveforms from acoustic features, the vocoder’s task is
to recover missing phase and other detailed information. This is-
sue is irrelevant to whether the waveform is speech, music, or other
sound events. Therefore, using synthesized data to train a vocoder is
feasible.

What kind of synthetic data should be used? Again, the
vocoder’s task is to learn a content-independent mapping from
acoustic features, e.g., mel-spectrograms, to raw waveforms while
leaving the audio’s content and speaker identity information to be
modeled by the acoustic model. Hense, we do not need to consider
semantic information when modeling characteristics of audio from
target domains but only need the produced audio in the corpus to
have the corresponding prior patterns. The examples from our syn-
thetic corpus and the audio synthesized by the vocoder trained with
them are available at our demo page1.

In this paper, we present a synthetic corpus generation method
to tackle the real data sparsity problem during neural vocoder train-
ing. We choose speeches and musical pieces (including singing

1Demo page: https://zerlinwang.github.io/synthetic-corpus-vocoder/
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Fig. 1. The pipeline of our proposed method. At first, based on the prior knowledge from different target audio domains, we model the dis-
tributions of acoustic features. Then we sample the acoustic features, including fundamental frequency f0, harmonic amplitude A, harmonic
distribution D, and time-varying filtered noise signal N from corresponding distributions, respectively. Lastly, audio is synthesized based on
the sampled acoustic features by Harmonic-plus-Noise Model and forms the synthetic corpus.

voices and instrument pieces) as the target scenarios for the audio
in synthetic corpus since vocoders are mainly used in these scenar-
ios. Specifically, we introduce the Random Walk (RW) model to fit
with uncertainty in speeches and add sine and uniform constituents
into the fundamental frequency to simulate the vibrato and steady
long tones respectively in musical pieces. By these heuristic meth-
ods, we construct the distributions of acoustic features, including
harmonic fundamental frequency, harmonics amplitude, harmonic
distribution, and filtered noise. At last, we adopt Harmonic-plus-
Noise Model (HNM) for corpus generation, in which acoustic fea-
tures sampled from the constructed corresponding distributions are
used as the components to synthesize audio belonging to the syn-
thetic corpus. The experimental results show the feasibility of our
method in all target scenarios.

In general, the contributions of this paper are three-fold:

• We propose a novel and effective synthetic corpus generation
method for neural vocoder training.

• We demonstrate that our proposed method enables the
vocoder to synthesize competitive results without real audio
and simultaneously generalize to scenarios such as human
voices and musical pieces.

• To the best of our knowledge, this is the first case to validate
the feasibility of training neural vocoders with synthetic data
alone, which is an under-explored avenue for further research.

2. METHODOLOGY
This section is organized as follows: Section 2.1 will introduce the
overall pipeline of the proposed synthetic corpus generation method.
Section 2.2 elaborates the detail of acoustic features production.
Section 2.3 narrates the Harmonic-plus-Noise Model shortly.

2.1. Overall pipeline
The pipeline of our proposed corpus synthesis method for neural
vocoder training is represented in Figure 1. It consists of three main
stages. To begin with, based on the prior knowledge from differ-
ent target audio domains, including speeches, singing voices, and
instrument pieces, we model the distributions of acoustic features
corresponding to fundamental frequency f0, harmonic distribution
D, harmonic amplitude A, and time-varying filtered noise N . Next,
a bulk of acoustic features are sampled from the modeled distribu-
tions. Lastly, we synthesize the audio in the corpus after summing
the harmonic and filtered noise components of the acoustic features
according to the Harmonic-plus-Noise Model (HNM).

2.2. Acoustic features generation
The baseline algorithm of our acoustic features generation is moti-
vated by [22]. In [22], authors used self-supervised loss on synthetic
data to help reconstruct losses on real data for the task of timbre and
pitch detection. However, our synthetic corpus serves as the sole

Algorithm 1 The specific algorithm flow of fundamental frequency
generation
Input: N is the random length of the segment. ps, po pv and

prw are the probability of silent, oscillation, vibrato and random
walk, respectively. rand() denotes the random number genera-
tor in [0, 1]. zeros(N) and ones(N) return all-zero and all-one
vector with the length N respectively. cumsum(·) returns the
cumulative sum of the elements. N means the Gaussian distri-
bution, and µ and σ are the distribution parameters. linspace(·)
returns evenly spaced samples. ’random perturbation’ means
noise sampled from normal distribution with random mean and
variance. The summation of scalars and vectors (bold) adopts
python broadcast.

Output: f0: denotes the generated fundamental frequency.
1: if rand() < ps then
2: f0 ← zeros(N)
3: else
4: fbasis

0 ← random fundamental frequency basis
5: if rand() < po then
6: if rand() < prw then
7: % random walk for speeches
8: displacement← cumsum(N (µ, σ2, N))
9: smoothed dis← smooth the displacement

10: curve← interpolate(smoothed dis, N )
11: else
12: E ← random exponent
13: curve← linspace(rand(), rand(), N)E

14: end if
15: vmax, vmin ← random maximum and minimum value
16: curve← normalization(curve, vmax, vmin)
17: if rand() < pv then
18: % sinusoidal vibrato for musical pieces
19: T ← random period
20: vibrato← curve ×sin(linspace(0, 2π × T,N))
21: f0 ← fbasis

0 + vibrato
22: else
23: f0 ← fbasis

0 + curve
24: end if
25: else
26: % steady f0 for musicial pieces
27: f0 ← fbasis

0 × ones(N)
28: end if
29: f0 ← f0 + random perturbation
30: end if
31: return f0



training data to train the neural vocoder without any intervention of
real audio.

Specifically, in our method, feature generation is not a one-shot
process. Instead, we produce a short segment with a random length
at a time to populate the time-varying acoustic feature vector. For
segments, at first, there is a possibility of being silent. Then, each
segment that is not silent is given random sampled fundamental
frequency, harmonic amplitude, harmonic distribution, and filtered
noise. Finally, a random perturbation will be added to the not silent
segment. For more preciously narrating, we show the specific algo-
rithm flow of fundamental frequency generation in Algorithm 1 as
an example. The other acoustic features are generated similarly.

As shown in Figure 1, besides the random perturbation and con-
figurations for all audio, we mainly pay attention to the characteris-
tics of speeches, singing voices, and instrumental musical pieces.

For speeches, the fundamental frequency of the human voice
in the time domain is non-monotonic on the macroscopic and oscil-
lates on the microscopic. Thus, we adopt a one-dimensional Random
Walk (RW) [24] model to fit with it. Random Walk Theory is a com-
mon statistical model composed of a sequence of trajectories, each
of which is random, like the record of a random process formed by
a drunken person’s steps. It is often leveraged to represent irregular
forms of change. In our implementation, as shown in the orange part
in Algorithm 1, we model the displacement at each step as a ran-
dom variable sampled from a one-dimensional normal distribution
and use the cumulative sum of displacement as the value for each
frame step:

xt ∼ N (µ, σ2) (1)

xt =

t∑
t′=0

xt′ , (2)

where t ∈ {0, 1, · · · , N − 1} denotes the frame step and N de-
notes the total length of this segment. N (µ, σ2) denotes a one-
dimensional normal distribution with mean µ and standard deviation
σ. xt and xt denote the step displacement and the cumulative sum
of displacement at frame step t, respectively. Then, to comply with
the short-time invariance of speeches, we smooth the curve:

y = x ∗ w, (3)

yt =

l∑
j=0

xt−jwj , (4)

where yt and xt denotes the value of smoothed curve y and origi-
nal curve x at frame step t respectively. ∗ denotes the convolution
operation. And w denotes a windowing function with the length l.
Here we let w = 1/l and 1 denotes an all-one vector. At last, we
obtain the curve value by interpolation according to the shape of the
smoothed displacement.

On the other hand, an essential feature of singing and instrumen-
tal musical pieces is the presence of long tones on some notes. Based
on long tones, the presence of vibrato is a prevalent trick to increase
expressiveness in singing or instrumental pieces. Therefore, whether
the synthesized waveform has pretty vibrato will be a critical eval-
uation criterion for the performance of the vocoder. Vibrato usually
contains a regular, pulsating oscillation (excursion) of the pitch. As
a result, for the simulation of vibrato, the curve of fundamental fre-
quency segment is multiplied by a sine wave-like constituent with a
certain probability pv . The cyan part in Algorithm 1 illustrate this
process. In addition to vibrato, it is also possible to be a steady
fundamental frequency without any oscillations during the long tone
phase. As presented in the blue part of Algorithm 1, we achieve the
steady fundamental frequency segment by broadcasting the fbasis

0

to the length of the segment N .

2.3. Harmonic-plus-Noise Model recap
Harmonic-plus-Noise Model (HNM) was firstly proposed in [25].
It can flexibly adjust the amplitude, envelope, and fundamental fre-
quency of audio respectively, which can precisely meet our goal to
simulate target audio from different domains. The effectiveness of
training the model using the HNM synthetic corpus has been verified
in some works [22, 23, 26].

In HNM, audio signal s(t) can be represented as the sum of the
harmonic sh(t) and noise components sn(t):

s(t) = sh(t) + sn(t). (5)

For the voiced part, the signal can be approximated by superimpos-
ing a series of harmonic components whose pitches are the integer
multiples of the fundamental frequency:

sh(t) =

K∑
k=0

Ak(t) sinϕk(t), (6)

in which K denotes the number of harmonics. Ak(t) denotes the
amplitude and ϕk(t) denotes the instantaneous phase. The phase
ϕk(t) is obtained by integrating the instantaneous frequency fk(t):

ϕk(t) = 2π

t∑
m=0

fk(m) + ϕ0,k, (7)

where ϕ0,k is the initial phase. And for the unvoiced part, we use an
FIR filter for noise modulation in the frequency domain:

Sn(t) = HtNt, (8)

where Ht = DFT(ht) is the FIR filter and Nt = DFT(nt) is white
noise signal. We recover the frame-wise filtered noise sn(t) =
IDFT(Sn(t)).

3. EXPERIMENTS

In this section, to verify the effectiveness of our proposed synthetic
corpus generation method, we constructed a neural vocoder trained
with the synthetic dataset we produced and tested its vocoding per-
formance in a wide range of scenarios.

3.1. Experiment settings
For experiments, we employed Differentiable Digital Signal Pro-
cessing (DDSP) [26] as the implementation of Harmonic-plus-Noise
Model to generate the synthetic corpus. We synthesized 1,000,000
pieces of synthetic audio with a sample rate of 24,000 for training.
The popular HiFi-GAN [8] is selected as our test neural vocoder.
Neural Vocoder (1M) denotes the HiFi-GAN vocoder trained with
all the 1,000,000 pieces of synthetic audio. There are two other
vocoders set for comparison with the vocoder trained with our syn-
thetic corpus:

Griffin-Lim [5]: a traditional waveform synthesis method that
also does not rely on real data.

Neural Vocoder (Real): a HiFi-GAN vocoder trained with real
corpus. We chose the same HiFi-GAN model as the representative
of neural vocoders trained with real corpus for fair comparisons. Its
training dataset is LJSpeech [27], a popular open-source single fe-
male English speaker dataset has a total length of approximately 24
hours. We directly used the official open-source trained model 2 in
our experiments.

In addition, to compare the performance of our synthetic cor-
pus to the real corpus with the same amount of data, we train an
extra HiFi-GAN model with a small part of the synthetic corpus

2Implementation and trained model: https://github.com/jik876/hifi-gan

https://github.com/jik876/hifi-gan


Table 1. Subjective evaluation results (MOS values). “Neural Vocoder (Real)” denotes the vocoder trained with real corpus LJSpeech.
“Neural Vocoder (10K)” denotes the vocoder trained with 10,000 pieces of synthetic audio and “Neural Vocoder (1M)” denotes the vocoder
trained with 1,000,000 pieces of synthetic audio. “CI” denotes the confidence interval. † denotes the neural vocoder trained with synthetic
corpus generated by our proposed method.

Model speeches (male) speeches (female) singing voices instrumental pieces

MOS 95% CI MOS 95% CI MOS 95% CI MOS 95% CI
Ground Truth 4.76 ± 0.06 4.64 ± 0.07 4.91 ± 0.03 4.68 ± 0.07
Griffin Lim 2.03 ± 0.08 1.73 ± 0.07 1.64 ± 0.07 1.54 ± 0.07

Neural Vocoder (Real) 3.05 ± 0.10 4.47 ± 0.07 3.28 ± 0.09 2.77 ± 0.10
Neural Vocoder† (10K) 2.66 ± 0.10 3.37 ± 0.10 3.04 ± 0.09 3.91 ± 0.09
Neural Vocoder† (1M) 3.18 ± 0.09 3.81 ± 0.08 4.20 ± 0.08 4.00 ± 0.08

Table 2. Objective evaluation results (PESQ and STOI values).
“Neural Vocoder (Real)” denotes the vocoder trained with real cor-
pus LJSpeech. “Neural Vocoder (10K)” denotes the vocoder trained
with 10,000 pieces of synthetic audio and “Neural Vocoder (1M)”
denotes the vocoder trained with 1,000,000 pieces of synthetic au-
dio. † denotes the neural vocoder trained with synthetic corpus gen-
erated by our proposed method.

Metric Model
speeches
(male)

speeches
(female)

singing
voices

PESQ

Griffin-Lim 1.989 1.382 0.517
Neural Vocoder (Real) 3.050 3.577 2.891
Neural Vocoder† (10K) 2.909 3.074 3.013
Neural Vocoder† (1M) 3.121 3.272 3.226

STOI

Griffin-Lim 79.29 77.11 56.96
Neural Vocoder (Real) 83.77 87.43 79.35
Neural Vocoder† (10K) 84.43 84.93 78.38
Neural Vocoder† (1M) 88.28 88.40 82.06

(10,000 pieces of synthetic audio and nearly the same total length
as the LJSpeech). We name it as Neural Vocoder (10K), which will
be talked about in Section 3.3.

We evaluated vocoders on several dimensions, including a sub-
jective metric, mean opinion score (MOS) of audio quality (Table
1), and two objective metrics, perceptual evaluation of speech qual-
ity (PESQ) and short-term objective intelligibility (STOI) (Table 2).
For each evaluation, we selected ten clips for the MOS test and three
hundred clips for the PESQ and STOI tests. A total of twenty-seven
people participated in the MOS test.

3.2. Experimental results of the full synthetic corpus (1M)
3.2.1. Speeches
In this evaluation, we extracted audio clips from the VCTK dataset
[28], which contains English speech from speakers with different
accents. As the LJSpeech is a female speaker dataset, for a fair com-
parison, we evaluated the vocoders on male speech data and female
speech data, respectively.

For male speech, the vocoder trained with our synthetic corpus
achieved the MOS score of 3.18, PESQ score of 3.121, and STOI
score of 88.28, the best of the three vocoders. The results showed
that the vocoders trained with our synthetic corpus can be employed
in synthesizing speech waveforms from male speakers but with av-
erage audio quality. And for female speech, the vocoder trained with
our synthetic corpus achieved the MOS score of 3.81, PESQ score of
3.272, and STOI score of 88.40, above-average results. However, the
results of the vocoder trained with real LJSpeech were higher than
with synthetic corpus in MOS and PESQ. This defeat is likely due to
the LJSpeech being a female speech English dataset, similar to the
setting of the VCTK dataset, which may lead to overfitting on the fe-
male speech data. And the experimental results on the other scenar-
ios confirmed our conjecture (the performances of Neural Vocoder
(Real) were relatively poor for male speeches, singing voices, and
instrumental pieces).

Overall, experimental results on speeches proved the effective-
ness of leveraging a Random Walk model to approximate the vari-
ation of the fundamental frequency of the speeches. What’s more
important, the results indeed demonstrated the feasibility of using
synthetic data to train neural vocoders in the field of speech.

3.2.2. Singing voices
We evaluated our method on singing voice clips extracted from the
Mandarin singing corpus dataset Opencpop [29]. Neural vocoder
trained with synthetic corpus achieved the highest scores in all met-
rics, i.e., MOS score of 4.20, PESQ score of 3.226, and STOI score
of 82.06, which significantly outperformed other vocoders’ results.
In other words, our generation approach of the synthetic corpus has
outstanding effectiveness in singing voices synthesis.

3.2.3. Musical pieces
Since PESQ and STOI are not suitable metrics for the music, we
only performed subjective MOS evaluations for musical pieces. Au-
dio clips were extracted from the single instrument musical pieces of
URMP dataset [30]. As shown in Table 1, the neural vocoder trained
with synthetic corpus significantly outperformed other vocoders,
achieving a MOS of 4.00. This result showed that the vocoder
trained with synthetic corpus generated by our method excels for
music synthesis tasks.

3.3. Investigation of the small synthetic corpus (10K)
As shown in Table 1 and Table 2, although the vocoder trained with
the small synthetic corpus was beaten by the vocoder trained with
real data in speeches and singing voices for both objective and sub-
jective metrics (besides STOI of male speeches), it was still usable in
female speeches and musical pieces, especially MOS score of 3.91
for instrumental pieces synthesis. This showed that it is hard for syn-
thetic data to beat high-quality real data with the same total length.
However, the collection of the synthetic corpus is at nearly no cost.
Compared with huge time and computational power consumption
during the neural vocoder training process, the consumption between
the generation of 10,000 and 1,000,000 pieces of synthetic audio is
almost no different.

4. CONCLUSION
In this paper, to overcome the problem of data scarcity during neural
vocoder training, we propose a synthetic corpus generation method,
which can generate an unlimited amount of corpus without any real
audio. Experimental results show that the neural vocoder trained
with the synthetic corpus generated by our method can be employed
in speech synthesis and achieves excellent performance in synthe-
sizing singing voices and instrumental pieces. Comparisons with
stronger baselines and exploring better models of speech fundamen-
tal frequencies will be carried out in future work.
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