Explore 3D Dance Generation via Reward Model from Automatically-Ranked Demonstrations
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1. Introduction
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3. Experiments

1.1 Task

= Music-conditioned 3D dance generation
v" Input: condition music & initial movement

1.2 Motivation

= Shortcomings in supervised learning approaches
v Weak generalization for unseen music

3.1 Comparisons with State-Of-The-Arts

Table 1. Evaluation results on test set of different dance

3.5 What is the performance of the reward model?
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3.2 Does exploration provide more alighment?

Table 2. Human-based evaluation results. We conduct a
human evaluation to ask annotators to select the preferred
dances through pairwise comparison.
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Figure 3. Reward model accuracy: The classification accuracy of the
reward model on dances generated by policies with varying levels of

noise during training. The reward model exhibits excellent
generalization on the test set.

Figure 1. Visualizations. Red and blue lines represent right and left leg movements, respectively. Top: Dance examples generated by the policy lack

exploration, exhibiting limited leg movements’ diversity and quality. Bottom: Dance examples generated by the policy reinforced via exploration align
with human preferences, showcasing increased leg movements’ diversity and quality.

Win Fail No Preference
Ours vs. FACT 044% 4.2% 1.4%
Ours vs. Bailando 66.7% 28.7% 4.6%

Table 5. Pose prediction accuracy. We evaluate the behavior cloning

2. Methodology
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Figure 2. Diagram of our E3D2: (1) An initial policy g Is distilled from the human expert dataset through behavior cloning. (2) Automatically
ranked dance demonstrations are collected by gz with different levels of noise. (3) A reward model Ry Is trained from these automatically ranked
demonstrations to rank the quality of dance trajectories. (4) A reinforcement learning policy mp; Is Initialized with gz and optimized to obtain the
optimal dance policy, guided by the reward model Ry.

3.3 Is a learned reward function more effective
than a hand-designhed one?

Table 3. Performance of hand-designed reward. ‘Steps’ is the
Interaction numbers between the agent and the environment.
The hand-designed reward only considers BAS and orientation,
leading to decreasing performance on other metrics during the
optimization.

policy on both seen and unseen music. ‘Complete Pose’: both the
codes of upper and lower half bodies are correct; ‘Partial Pose’: at
least one code Is correct. These results demonstrate the limited
generalization capabilities of supervised learning approaches.

Dataset Complete Pose Partial Pose
Music Seen 54.69% 73.44%
Music Unseen 2.32% 7.52%

Table 6. Performance of behavior cloning policy on seen and unseen
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3.4 Higher level noise leads to the worse
demonstrations?

Table 4. Ablation on the impact of noise in the training set. The
performance of the BC policy gradually decreases as the noise
level increases. u represents the average total reward across all
trajectories In the training set.
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0.02 13.94 2.71 8.01 6.20 0.2782 206.31
0.25  40.45 22.39 4.41 2.40 0.2501 127.68
0.50  48.59 29.80 3.72 1.61 0.2547  52.09
0.75  53.79 33.35 3.31 1.32 0.2451 -20.24
1.00  57.18 35.67 3.04 1.17 0.2427 -91.53

Visual comparisons
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