Explore 3D Dance Generation via Reward Model from Automatically-Ranked Demonstrations

1	lotro

1.1 Task

- Music-conditioned 3D dance generation
- Input: condition music & initial movement
- Output: dance movements aligned with give music
- Making more people aware of and enjoy the art of dance

Figure 1. Visualizations. Red and blue lines represent right and left leg movements, respectively. *Top*: Dance examples generated by the policy lack exploration, exhibiting limited leg movements' diversity and quality. *Bottom:* Dance examples generated by the policy reinforced via exploration align with human preferences, showcasing increased leg movements' diversity and quality.

Figure 2. Diagram of our E3D2: (1) An initial policy π_{BC} is distilled from the human expert dataset through behavior cloning. (2) Automatically ranked dance demonstrations are collected by π_{BC} with different levels of noise. (3) A reward model R_{θ} is trained from these automatically ranked demonstrations to rank the quality of dance trajectories. (4) A reinforcement learning policy π_{RL} is initialized with π_{BC} and optimized to obtain the optimal dance policy, guided by the reward model R_{θ} .

Zilin Wang^{1*}, Haolin Zhuang^{1*}, Lu Li^{1*}, Yinmin Zhang², Junjie Zhong³, Jun Chen¹, Yu Yang¹, Boshi Tang¹, Zhiyong Wu^{1†}

¹ Shenzhen International Graduate School, Tsinghua University ² University of Sydney, ³ Waseda University

duction

1.2 Motivation

Shortcomings in supervised learning approaches

- Weak generalization for unseen music
- Fragility of auto-regressive models
- Misalignment between generated dances and human preferences

3.1 Comparisons with State-Of-The-Arts

Table 1. Evaluation results on test set of different dance
 generation frameworks. To ensure a fair comparison with baselines, we report the results of Bailando without RL finetuning on the test set.

					- h
Motion Quality		Motion Diversity			acy
$FID_k\downarrow$	$FID_g\downarrow$	$DIV_k\uparrow$	$DIV_g\uparrow$	$BAS\uparrow$	uno os
17.10	10.60	8.19	7.45	0.2484	- 3 0.93 • •
37.31	34.87	5.75	5.47	0.2175	
28.62 26.25	9.95 8.94	6.27 7.96	6.22 6.49	0.2220 0.2232	0.94
	Motion $FID_k \downarrow$ 17.10 37.31 28.62 26.25	Motion Quality $FID_k \downarrow$ $FID_g \downarrow$ 17.10 10.60 37.31 34.87 28.62 9.95 26.25 8.94	Motion QualityMotion I $FID_k \downarrow$ $FID_g \downarrow$ $DIV_k \uparrow$ 17.1010.608.1937.3134.875.7528.629.956.2726.258.947.96	Motion QualityMotion Diversity $FID_k \downarrow$ $FID_g \downarrow$ $DIV_k \uparrow$ $DIV_g \uparrow$ 17.1010.608.197.4537.3134.875.755.4728.629.956.276.2226.258.947.966.49	$\begin{tabular}{ c c c c c } \hline Motion Quality & Motion Diversity \\ \hline FID_k \downarrow & FID_g \downarrow & DIV_k \uparrow & DIV_g \uparrow & BAS \uparrow \\ \hline 17.10 & 10.60 & 8.19 & 7.45 & 0.2484 \\ \hline 37.31 & 34.87 & 5.75 & 5.47 & 0.2175 \\ \hline 28.62 & 9.95 & 6.27 & 6.22 & 0.2220 \\ \hline 26.25 & 8.94 & 7.96 & 6.49 & 0.2232 \\ \hline \end{tabular}$

3.2 Does exploration provide more alignment?

Table 2. Human-based evaluation results. We conduct a
 human evaluation to ask annotators to select the preferred dances through pairwise comparison.

	Win	Fail	No Preference
Ours vs. FACT	94.4%	4.2%	1.4%
Ours vs. Bailando	66.7%	28.7%	4.6%

3.3 Is a learned reward function more effective than a hand-designed one?

Table 3. Performance of hand-designed reward. 'Steps' is the
 interaction numbers between the agent and the environment. The hand-designed reward only considers BAS and orientation, leading to decreasing performance on other metrics during the optimization.

	Steps	$FID_k\downarrow$	$FID_g\downarrow$	$DIV_k\uparrow$	$DIV_g\uparrow$	$BAS\uparrow$	la
,	0M	28.62	9.95	6.27	6.22	0.2220	mu
	1 M	45.39	15.41	4.17	3.49	0.2338	suj
	2M	46.25	17.20	4.63	3.46	0.2374	
	3M	43.10	18.59	4.82	2.90	0.2283	
	4 M	47.80	22.15	4.97	2.47	0.2388	1
	5M	56.30	24.58	5.52	3.56	0.2442	

3.4 Higher level noise leads to the worse demonstrations?

Table 4. Ablation on the impact of noise in the training set. The

 performance of the BC policy gradually decreases as the noise level increases. \bar{u} represents the average total reward across all trajectories in the training set.

ϵ	$FID_k\downarrow$	$FID_g\downarrow$	$DIV_k\uparrow$	$DIV_g\uparrow$	$BAS\uparrow$	\overline{u}
0.02	13.94	2.71	8.01	6.20	0.2782	206.31
0.25	40.45	22.39	4.41	2.40	0.2501	127.68
0.50	48.59	29.80	3.72	1.61	0.2547	52.09
0.75	53.79	33.35	3.31	1.32	0.2451	-20.24
1.00	57.18	35.67	3.04	1.17	0.2427	-91.53

Figure 3. Reward model accuracy: The classification accuracy of the reward model on dances generated by policies with varying levels of noise during training. The reward model exhibits excellent generalization on the test set.

Table 5. Pose prediction accuracy. We evaluate the behavior cloning
 policy on both seen and unseen music. 'Complete Pose': both the codes of upper and lower half bodies are correct; 'Partial Pose': at least one code is correct. These results demonstrate the limited generalization capabilities of supervised learning approaches.

Musi Music

able 6. Performance of behavior cloning policy on seen and unseen usic. The significant gap indicates the limited generalization of pervised learning approaches.

Dataset Music Seen Music Unseen

3. Experiments

3.5 What is the performance of the reward model?

ataset	Complete Pose	Partial Pose
ic Seen	54.69%	73.44%
c Unseen	2.32%	7.52%

	$FID_k\downarrow$	$FID_g\downarrow$	$DIV_k\uparrow$	$DIV_g \uparrow$	$BAS\uparrow$
	8.48	1.88	8.28	6.86	0.2854
n	28.62	9.95	6.27	6.22	0.2220

Visual comparisons

Contact: wangzl21@mails.tsinghua.edu.cn